Posts relating to regenerative design, transition and co-creation for eco-smart holistic human habitats facilitating a restorative green-blue circular economy of proximity #SmartGardenCity
Pages
Saturday, December 19, 2015
Friday, April 3, 2015
Regenerative Urbanism
Regenerative design is a process-oriented systems theory based approach to design. The term "regenerative" describes processes that restore, renew or revitalize their own sources of energy and materials, creating sustainable systems that integrate the needs of society with the integrity of nature. The basis is derived from systems ecology with a closed loop input–output model or a model in which the output is greater than or equal to the input with all outputs viable and all inputs accounted for. Regenerative design is the biomimicry of ecosystems that provide for all human systems to function as a closed viable ecological economics system for all industry. It parallels ecosystems in that organic (biotic) and synthetic (abiotic) material is not just metabolized but metamorphosed into new viable materials. Ecosystems and regeneratively designed systems are holistic frameworks that seek to create systems that are absolutely waste free. The model is meant to be applied to many different aspects of human habitation such as urban environments, buildings, economics, industry and social systems. Simply put, it is the design of ecosystems and human behavior, or culture that function as human habitats.
http://en.wikipedia.org/wiki/Regenerative_design
Conception régénératrice est une théorie des systèmes approche orientée processus à base de concevoir. Le terme de "régénération" décrit les processus qui rétablissent, renouveau et de revitalisation de leurs propres sources d'énergie et de matières, créant des systèmes durables qui intègrent les besoins de la société avec l'intégrité de la nature. La base est dérivée de systèmes écologie avec un modèle d'entrée-sortie en boucle fermée ou un modèle dans lequel la sortie est supérieure ou égale à l'entrée de toutes les sorties et toutes les entrées viables en compte. Conception régénératrice est le biomimétisme des écosystèmes qui fournissent pour tous les systèmes humains de fonctionner comme un système d'économie écologique viable fermé pour toute l'industrie. Il parallèle écosystèmes dans cette organique (biologique) et synthétique (abiotique) matériau est non seulement métabolisé, mais métamorphosé en nouveaux matériaux viables. Les écosystèmes et les systèmes conçus par régénération sont cadres holistiques qui cherchent à créer des systèmes qui sont absolument sans déchets. Le modèle est destiné à être appliqué à de nombreux aspects différents de l'habitation humaine tels que les environnements urbains, des bâtiments, de l'économie, de l'industrie et des systèmes sociaux. Autrement dit, il est la conception des écosystèmes et le comportement humain, la culture ou qui fonctionnent comme des habitats humains.
http://en.wikipedia.org/wiki/Regenerative_design
Image source: ow.ly/Kla7301DTzz
Original link: http://www.triplepundit.com/2016/06/organisation-ready-get-future-fit/?platform=hootsuite
http://en.wikipedia.org/wiki/Regenerative_design
Please visit this knowledgebase resource for the built environment
also, see the twitter hashtag #SmartGardenCity
also, see the twitter hashtag #SmartGardenCity
Conception régénératrice est une théorie des systèmes approche orientée processus à base de concevoir. Le terme de "régénération" décrit les processus qui rétablissent, renouveau et de revitalisation de leurs propres sources d'énergie et de matières, créant des systèmes durables qui intègrent les besoins de la société avec l'intégrité de la nature. La base est dérivée de systèmes écologie avec un modèle d'entrée-sortie en boucle fermée ou un modèle dans lequel la sortie est supérieure ou égale à l'entrée de toutes les sorties et toutes les entrées viables en compte. Conception régénératrice est le biomimétisme des écosystèmes qui fournissent pour tous les systèmes humains de fonctionner comme un système d'économie écologique viable fermé pour toute l'industrie. Il parallèle écosystèmes dans cette organique (biologique) et synthétique (abiotique) matériau est non seulement métabolisé, mais métamorphosé en nouveaux matériaux viables. Les écosystèmes et les systèmes conçus par régénération sont cadres holistiques qui cherchent à créer des systèmes qui sont absolument sans déchets. Le modèle est destiné à être appliqué à de nombreux aspects différents de l'habitation humaine tels que les environnements urbains, des bâtiments, de l'économie, de l'industrie et des systèmes sociaux. Autrement dit, il est la conception des écosystèmes et le comportement humain, la culture ou qui fonctionnent comme des habitats humains.
http://en.wikipedia.org/wiki/Regenerative_design
Image source: ow.ly/Kla7301DTzz
Original link: http://www.triplepundit.com/2016/06/organisation-ready-get-future-fit/?platform=hootsuite
Idealised Transport Model and Simplfied Hierarchy of Transport Systems
Modèle de Transport Idéalisée et un Système de Hiérarchie des Transports Simplifiée
The first part of the article briefly presents an idealized, multi-modal, inter-modal transit model for Smart City systems thinking.
La première partie de l'article présente brièvement un modèle multi-modale, inter-modale de transit idéalisée pour reflexions de la théorie des systémes Smart City.
The second part of this article discusses in plain terms, the hierarchy of transport methods, and how we interact with transportation systems.
La deuxième partie de cet article traite en termes clairs de la hiérarchie des modes de transport, et de la façon dont nous interagissons avec les systèmes de transport.
Smart Garden City
The following multi-modal, inter-modal, multi-scale, modular model aims to outline transit routes, nodes and methods in an idealized construct, to act as a conceptual aid to planning and design.
Le suivant; multi- modale , entre - modale , multi-échelle , le modèle modulaire vise à définir des itinéraires de transit , des nœuds et des méthodes dans une construction idéalisée , d'agir comme une aide conceptuelle à la planification et conception.
"Models are abstraction, simplifications of the real thing" (Batty, 2015) whilst "essentially, all models are wrong, but some are useful" (Box and Draper, 1987 in Batty 2015) Batty (2015) also considers they "we need models because they impose a framework, an order on our thinking about the present and the future that imposes a discipline on how we try to address problems of land use and transportation rigorously... Models are thus there to inform the debate and there is still the prospect of using them conditionally to address 'what-if' scenarios.." (Batty, 2015).
" Les modèles sont l'abstraction , des simplifications de la chose réelle " ( Batty , 2015) tandis que " l'essentiel , tous les modèles sont faux , mais certains sont utiles " ( Box et Draper , 1987 à Batty 2015) Batty (2015 ) considère également que " nous avons besoin modèles parce qu'ils imposent un cadre , une commande sur notre réflexion sur le présent et de l'avenir qui impose une discipline sur la façon dont nous essayons de résoudre les problèmes d'utilisation des terres et le transport de rigueur ... les modèles sont donc là pour éclairer le débat et il ya encore la perspective de les utiliser conditionnellement à répondre pour « aux et si » scénarios .. " ( Batty , 2015) .
This model is intended to illustrate an idealized transport system, servicing a Mixed-Use, TOD urban area (Transit Orientated Development - TOD), with travel nodes within a walking distance that is accessible for all ages and mobilities, such as elderly and parents with young children, for example.
All the routes are direct - conforming to what we know to be the most direct route, therefore the most energy efficient using current transport methods.
Tous les itinéraires sont directs pour un rendement maximal - conforme à ce que nous savons être la voie la plus directe, donc la plus éconergétiques utilisant les méthodes de transport actuels.
The first image shows the complete transport model, set within the Smart Garden City model, this is then broken-down and presented in successive images to clarify the networks within the model.
La première image montre le modèle de transport dans son intégralité comme indiqué de Ville Jardin Intelligente (Smart Garden City), cette opération est alors détaille et présenté dans les images successives pour clarifier les réseaux au sein du modèle.
It is proposed that the population of vehicles is limited to prevent the occurrence of congestion, but personal autonomy is maintained by multi-modal, intermodal travel on an extensive network, with the availability of bicycles and electric cars at the local level. It is envisaged that the AutoLib-style electric car network can be employed providing non rail, mechanized transit.
Il est proposé que le nombre de véhicules est limité pour prévenir l'apparition de la congestion, mais l'autonomie personnelle est maintenue par le multi-modale, Voyage intermodal sur un vaste réseau, avec à disponibilité des vélos et des voitures électriques au niveau local. Il est prévu que le réseau de voiture électrique tel que AutoLib peut être utilisé pour des transport, non-ferroviaires, mais mécanisés.
Ci-dessous le modèle du transport complet idéalisé (à échelle de la ville):
Above is the complete idealized model. It features a hierarchy of transportation methods, at a range of scales - in reflection of the assertions made in the introduction, namely that,
" The purpose, range and destination of our journey determines the optimal mode of transport or combination thereof. "
Therefore we see:
Tramways sur voies vertes fonctionnent bien dans de nombreuses villes; Bilbao, Le Mans et ainsi de suite.
Installing such a network in an established settlement of course is tricky, however the tier or the area serviced by this network can still be considered on the hierarchy of transportation. As a more localized service or network. This hypothetical city is divided into seven "Vales" but similar subdivisions exist within existing cities and each can be allocated a transport subdivision.
Alternative vehicles may simply be buses or mini buses, electric buses, trams and so on.
Métro. Véhicules alternatifs peuvent être simplement bus ou mini-bus, les bus, les tramways électriques et ainsi de suite.
L'image ci-dessous montre comment les nœuds de transport sont situés à des points clés ou «lieux centraux» de la ville - où deux districts convergent, où les routes se croisent et ainsi de suite, la couverture en maximisant, l'accessibilité et la mobilité, donc pour permettre Transit Oriented Development.
It may appear that we do not need cars in this situation, however there remains great scope for industries to manufacture a great many alternative modes of transport and still for global export, designing and building vehicles for Smart Transport systems.
Il peut sembler que nous ne devons pas les voitures dans cette situation, mais il reste de grandes possibilités pour les industries de la fabrication d'un grand nombre de modes de transport alternatifs et encore pour l'exportation mondiale, la conception et les véhicules de construction pour les systèmes de transport intelligent.
À aucun moment dans la ville hypothétique, dans l'environnement construit, est un piéton plus de 500 m à partir du nœud de transport le plus proche.
Pour ces raisons et pour d'autres liés à la collecte des déchets et le recyclage, cette ville idéalisée a une ligne ferroviaire commerciale distincte, reliée au satellite ou dépôts de distribution métaboliques periphic. Permettant 24 heures de livraison / expédition sans l'entrave de la congestion et d'accessibilité.
To travel from point A to point B, the ideal is one mode of transport at sustained speed from A - B with no stops or change overs.
When we travel short distances we use different means of transport to when we travel over great distances.
The purpose, distance and destination of our journey determines the optimal mode of transport or combination thereof.
Getting to the moon, necessitates a space vehicle, getting deep into the jungle may necessitate a helicopter, 4x4, animals and of course, traveling by foot.
Getting from our home to work, requires less specialist transport methods than getting to the moon.
All very obvious, but considering these statements and looking at hierarchies of transportation methods can help determine the best combination of means for navigating and traveling within a city or geographical area.
If considering transportation for a city, we may seek the most efficient, fastest method or combination of methods, that is safe, reliable, sustainable and affordable.
When traveling to the moon, the levels of costs, durability and safety greatly differ from domestic journeys.
Without spending too much time on a diagram...
We can see there is a hierarchy of transport methods
These can be arranged by:
The first part of the article briefly presents an idealized, multi-modal, inter-modal transit model for Smart City systems thinking.
La première partie de l'article présente brièvement un modèle multi-modale, inter-modale de transit idéalisée pour reflexions de la théorie des systémes Smart City.
La deuxième partie de cet article traite en termes clairs de la hiérarchie des modes de transport, et de la façon dont nous interagissons avec les systèmes de transport.
Part 1 - Idealised Transport Model
Partie 1 - Une Modèle de transport idéalisé
Smart Garden City
Transport Model
Modèle de Transport
"Different utility and infrastructure functions optimize at different scales depending on how you quantify value."— Smart Garden Cities (@FractalCities) March 17, 2017
Paul Cereghino pic.twitter.com/W85Nbdiq7z
The following multi-modal, inter-modal, multi-scale, modular model aims to outline transit routes, nodes and methods in an idealized construct, to act as a conceptual aid to planning and design.
Le suivant; multi- modale , entre - modale , multi-échelle , le modèle modulaire vise à définir des itinéraires de transit , des nœuds et des méthodes dans une construction idéalisée , d'agir comme une aide conceptuelle à la planification et conception.
"Models are abstraction, simplifications of the real thing" (Batty, 2015) whilst "essentially, all models are wrong, but some are useful" (Box and Draper, 1987 in Batty 2015) Batty (2015) also considers they "we need models because they impose a framework, an order on our thinking about the present and the future that imposes a discipline on how we try to address problems of land use and transportation rigorously... Models are thus there to inform the debate and there is still the prospect of using them conditionally to address 'what-if' scenarios.." (Batty, 2015).
" Les modèles sont l'abstraction , des simplifications de la chose réelle " ( Batty , 2015) tandis que " l'essentiel , tous les modèles sont faux , mais certains sont utiles " ( Box et Draper , 1987 à Batty 2015) Batty (2015 ) considère également que " nous avons besoin modèles parce qu'ils imposent un cadre , une commande sur notre réflexion sur le présent et de l'avenir qui impose une discipline sur la façon dont nous essayons de résoudre les problèmes d'utilisation des terres et le transport de rigueur ... les modèles sont donc là pour éclairer le débat et il ya encore la perspective de les utiliser conditionnellement à répondre pour « aux et si » scénarios .. " ( Batty , 2015) .
This model is intended to illustrate an idealized transport system, servicing a Mixed-Use, TOD urban area (Transit Orientated Development - TOD), with travel nodes within a walking distance that is accessible for all ages and mobilities, such as elderly and parents with young children, for example.
Ce modèle cherche à illustrer un système de transport servant un développement-usage-mixte et orienté sur les transits (transit oriented développement - TOD), avec des nœuds de voyage sur une distance accessibles à pieds pour toutes les âges et mobilités.
All the routes are direct - conforming to what we know to be the most direct route, therefore the most energy efficient using current transport methods.
The first image shows the complete transport model, set within the Smart Garden City model, this is then broken-down and presented in successive images to clarify the networks within the model.
La première image montre le modèle de transport dans son intégralité comme indiqué de Ville Jardin Intelligente (Smart Garden City), cette opération est alors détaille et présenté dans les images successives pour clarifier les réseaux au sein du modèle.
It is proposed that the population of vehicles is limited to prevent the occurrence of congestion, but personal autonomy is maintained by multi-modal, intermodal travel on an extensive network, with the availability of bicycles and electric cars at the local level. It is envisaged that the AutoLib-style electric car network can be employed providing non rail, mechanized transit.
Il est proposé que le nombre de véhicules est limité pour prévenir l'apparition de la congestion, mais l'autonomie personnelle est maintenue par le multi-modale, Voyage intermodal sur un vaste réseau, avec à disponibilité des vélos et des voitures électriques au niveau local. Il est prévu que le réseau de voiture électrique tel que AutoLib peut être utilisé pour des transport, non-ferroviaires, mais mécanisés.
Because of its fractal design, this can be replicated and expanded without detriment to the established whole. This modular approach may also mean that costs and quantities for implementation can be more easily projected. This type of transport network may also be a way to consider systematic urban extension; avoiding problems arising from incremental urban sprawl (for the management of urban sprawl).
En raison de sa conception de fractale, ce qui peut être reconduit et étendu sans porter préjudice à l'ensemble établie. Cette approche modulaire peut également signifier que les coûts et les quantités pour la mise en œuvre peuvent être plus facilement projetées. Ce type de réseau de transport peut aussi être un moyen d'envisager l'extension urbaine systématique; éviter les problèmes découlant de l'étalement urbain incrémentale (pour la gestion de l'étalement urbain).
En raison de sa conception de fractale, ce qui peut être reconduit et étendu sans porter préjudice à l'ensemble établie. Cette approche modulaire peut également signifier que les coûts et les quantités pour la mise en œuvre peuvent être plus facilement projetées. Ce type de réseau de transport peut aussi être un moyen d'envisager l'extension urbaine systématique; éviter les problèmes découlant de l'étalement urbain incrémentale (pour la gestion de l'étalement urbain).
The presented model does not use combustion engines within the city (excluding any national rail diesel trains), but relies exclusively on electrical vehicles, charged or powered by electrical energy supplied hypothetically, by clean energy sources (Hydro, Solar, Wind etc). Energy supply shall be discussed in a later article. (As from 1st January 2017, ALL Dutch trains are powered by 100% wind energy for example).
Le modèle présenté n'utiliser pas les moteurs de combustion au sein de la ville (excluant les trains nationaux utilisant le diesel ferroviaire), mais est exclusivement fondée sur les véhicules électriques, chargés ou alimentés par l'énergie électrique fournie par hypothèse, par des sources d'énergie propre (hydraulique, solaire, vent, etc.). L'approvisionnement en énergie doit être discuté dans un article ultérieur.
Le modèle présenté n'utiliser pas les moteurs de combustion au sein de la ville (excluant les trains nationaux utilisant le diesel ferroviaire), mais est exclusivement fondée sur les véhicules électriques, chargés ou alimentés par l'énergie électrique fournie par hypothèse, par des sources d'énergie propre (hydraulique, solaire, vent, etc.). L'approvisionnement en énergie doit être discuté dans un article ultérieur.
The transport system is Multi-modal; aiming to provide for a range of journey types, determined by purpose, distance and intended destination - whether within or out of the city. The network is linked at "key points" or "central places" where multi-modal stations provide an Inter-modal travel system.
Le système de transport est multi-modale; visant à fournir une gamme de types de parcours, déterminée par objectif, la distance et la destination - tant à l'intérieur ou à l'extérieur de la ville. Le réseau est relié à des « endroits clés » ou « lieux centraux » où les stations multi-modales fournissent un système de Voyage Inter-modal.
Le système de transport est multi-modale; visant à fournir une gamme de types de parcours, déterminée par objectif, la distance et la destination - tant à l'intérieur ou à l'extérieur de la ville. Le réseau est relié à des « endroits clés » ou « lieux centraux » où les stations multi-modales fournissent un système de Voyage Inter-modal.
Commercial (Materials, Merchandise and Waste) routes are provided as an independent network, to separate domestic journeys from industrial and commercial (Merchandise/Waste) haulage journeys. Waste it taken for recycling in the metabolic centers in the periphery.
Il ya deux réseaux distincts de voyage. Un pour les trajets domestiques. La deuxième pour les activités commerciales. Les activités commerciales telles que l'alimentation, la collecte, le transport de matières et de marchandises, ainsi que l'évacuation des déchets. Marchandise / Matériaux de marchés ou pour de fabrication. Les déchets son prises pour le recyclage et le compostage - dans les centres métaboliques dans la périphérie.
Il ya deux réseaux distincts de voyage. Un pour les trajets domestiques. La deuxième pour les activités commerciales. Les activités commerciales telles que l'alimentation, la collecte, le transport de matières et de marchandises, ainsi que l'évacuation des déchets. Marchandise / Matériaux de marchés ou pour de fabrication. Les déchets son prises pour le recyclage et le compostage - dans les centres métaboliques dans la périphérie.
Each travel node is a station at the "central place" of a given urban area within the Smart Garden City.
Chaque nœud de Voyage est une station à la "place centrale" (lieux centraux) d'une zone urbaine donnée dans le Smart Garden City (Ville Jardin Intelligente).
Chaque nœud de Voyage est une station à la "place centrale" (lieux centraux) d'une zone urbaine donnée dans le Smart Garden City (Ville Jardin Intelligente).
The level of the intersection, on the hierarchy of transport methods, determines the type of urban function - such as business, retail, residential and so on, although these definitions are blurred by mixed use development (to be described in a forth-coming article).
Le niveau d'intersection, sur la hiérarchie des modes de transport, détermine le type de fonction urbaine - tels que le commerce, la vente au détail, résidentiel et ainsi de suite, bien que ces définitions soient floues par le développement à usage mixte (qui sera décrit dans un article ci-venir )
Le niveau d'intersection, sur la hiérarchie des modes de transport, détermine le type de fonction urbaine - tels que le commerce, la vente au détail, résidentiel et ainsi de suite, bien que ces définitions soient floues par le développement à usage mixte (qui sera décrit dans un article ci-venir )
The hierarchy of transport methods are as follows:
La hierarchie des méthodes de transport :
La hierarchie des méthodes de transport :
FOOT - Brown, and all routes - Pedestrian (A piéds - brun et tous les routes)
BIKE - Brown, and all routes - Bicycle (A vélo - brun et tous les routes)
CAR - White routes - Autolib and City Cycle - electric vehicle and Bike share (Blanc - pour les voitures de partage - Autolib, et stations Autolib et Velib)
TUBE - Yellow routes - Tube/Metro - (Underground) (Metro-locale - routes jaune)
TRAM - Orange routes - Tram/Light rail (Overland) (routes Orange - Tramway au train léger sur voies ferrées)
TRAIN - Blue routes - National Rail (routes Bleu - Lignes de train nationales)
COMMERCIAL - Magenta routes - Light rail, for distribution/collection of products and "waste" materials. (routes Magenta - Train léger sur voie ferrée, pour la distribution / collecte des produits et des matériaux «déchets».)
COMMERCIAL - Magenta routes - Light rail, for distribution/collection of products and "waste" materials. (routes Magenta - Train léger sur voie ferrée, pour la distribution / collecte des produits et des matériaux «déchets».)
Ci-dessous le modèle du transport complet idéalisé (à échelle de la ville):
Smart Garden City - Transport System - Transit Orientated Development |
Above is the complete idealized model. It features a hierarchy of transportation methods, at a range of scales - in reflection of the assertions made in the introduction, namely that,
" The purpose, range and destination of our journey determines the optimal mode of transport or combination thereof. "
Therefore we see:
- a range of transport networks at different scales
- a selection of destinations marked by stations at "central places"
- a selection of vehicles and two distinct networks - one commercial, the other primarily public or domestic.
Est au-dessus du modèle idéalisé complète. Il dispose d'une hiérarchie des modes de transport, à une gamme d'échelles - dans la réflexion des affirmations faites dans l'introduction, à savoir que,
« Le but, la portée et la destination de notre voyage détermine le mode optimal de transport ou combinaison de ceux-ci. »
Par conséquent, nous voyons:
- une gamme de réseaux de transport à différentes échelles
- une sélection de destinations marquées par des stations au «lieux centraux»
- une sélection de véhicules et de deux réseaux distincts - un commercial, l'autre essentiellement public ou domestique.
Batty (2015) refers to a 'four-step process' - trip generation, trip distribution, modal split, and then assignment.
Batty (2015) fait référence à un « processus en quatre étapes » - la génération de déplacements, la distribution de voyage, la répartition modale, puis affectation.
Batty (2015) fait référence à un « processus en quatre étapes » - la génération de déplacements, la distribution de voyage, la répartition modale, puis affectation.
Below a selection of images will de-construct the transport networks and clearly define their location and potential functions within the city. Although the functions are by no means exhaustive.
Ci-dessous une sélection d'images sera dé-construire les réseaux de transport et de définir clairement leur position et les fonctions potentielles au sein de la ville. Bien que les fonctions ne soient nullement exhaustive.
National Line
Extra-city travel routes - national rail linkages from outside the city, into the city, with stops at major nodes within the centre and satellite centers.
Itinéraires de voyage extra-ville - liaisons ferroviaires nationaux de l'extérieur de la ville, dans la ville, avec des arrêts dans les principaux nœuds dans les centres de centres et par satellite.
Itinéraires de voyage extra-ville - liaisons ferroviaires nationaux de l'extérieur de la ville, dans la ville, avec des arrêts dans les principaux nœuds dans les centres de centres et par satellite.
Smart Garden City - National Rail Connections - TOD |
Citywide Light Rail
Trams on greenways work well in many cities; Bilbao, Le Mans and so on.Tramways sur voies vertes fonctionnent bien dans de nombreuses villes; Bilbao, Le Mans et ainsi de suite.
Smart Garden City - Citywide Light Rail - TOD |
Vale Underground
Seeing as this is an idealized city, and to preserve some green space above ground, why not have an underground train system - costs of installation ? Less than all the inhabitants buying cars, if we are speaking in terms of money spend, materials spent, fuels and space, as a collective species inhabiting a planet.Installing such a network in an established settlement of course is tricky, however the tier or the area serviced by this network can still be considered on the hierarchy of transportation. As a more localized service or network. This hypothetical city is divided into seven "Vales" but similar subdivisions exist within existing cities and each can be allocated a transport subdivision.
Alternative vehicles may simply be buses or mini buses, electric buses, trams and so on.
Métro. Véhicules alternatifs peuvent être simplement bus ou mini-bus, les bus, les tramways électriques et ainsi de suite.
District Electric Car Share and City Bike
I will let Wikipedia explain the electric car sharing scheme such as the one in Paris - Autolib, this kind of scheme may utilize different types of rechargeable non-rail vehicles to enable autonomous (non-rail) vehicular transportation.
Je vais laisser Wikipedia expliquer le système de partage de voiture électrique comme celui de Paris - Autolib, ce type de régime peut utiliser différents types de véhicules non ferroviaires rechargeables pour permettre autonome (non ferroviaire) le transport par véhicules.
This car-share technique can limit car numbers in the city, but preserve personal mobility needs.
Cette technique d'auto-partage peut limiter les nombre des voitures dans la ville, mais de préserver les besoins de mobilité personnelle.
For instance, family and friends are coming to stay and we need to pick them up from the station with their bags, or we have something particularly heavy to collect and deliver right to someone's doorstep - take an electric car or buggy... electric vehicles can range from 4x4 quads and Mules to micro cars, family cars, milk floats and so on.
Par exemple, la famille et les amis viennent pour rester et nous avons besoin d'aller les chercher à la gare avec leurs sacs, ou si nous avons quelque chose de particulièrement lourde pour collecter et livrer directement à la porte de quelqu'un - prendre une voiture électrique ou poussette ... véhicules électriques peut varier de quads 4x4 et des mules pour micro voitures, voitures familiales, flotteurs de lait et ainsi de suite.
The bike-share exists in many cities and works well - the Boris Bikes of London and the Velib of Paris
Le vélo-partage existe dans de nombreuses villes et fonctionne bien - les vélos de Boris, Londres, et le Vélib de Paris
The image below indicates the distribution of car/bike share ports in the city - they are located at central district stations where users can also take the underground, some of the stations also allow crossovers to city tram, and national rail.
L'image ci-dessous indique la répartition des ports de part de voiture / vélo dans la ville - ils sont situés dans les stations du district central où les utilisateurs peuvent également prendre le métro, certaines des stations permettent également aux croisements de tramway de la ville, et ferré national.
Pedestrian and Cycle Network
With every good transport system comes ample pedestrian and cycleways - these are on the lowest, yet most detailed and abundant tier of the hierarchy, covering the city as a silky-fine weave
Avec tous les système de transport bon vient amplement piétons et pistes cyclables - ceux-ci sont sur le bas, encore plus détaillée et abondante niveau de la hiérarchie, couvrant la ville comme une armure soyeuse-fine
Avec tous les système de transport bon vient amplement piétons et pistes cyclables - ceux-ci sont sur le bas, encore plus détaillée et abondante niveau de la hiérarchie, couvrant la ville comme une armure soyeuse-fine
Pedestrian to Transport Connectivity
The image below shows how transport nodes are situated at key points or "central places" in the city - where two districts converge, where routes cross and so on, maximising coverage, accessibility and therefore mobility, to allow for Transit Orientated Development.L'image ci-dessous montre comment les nœuds de transport sont situés à des points clés ou «lieux centraux» de la ville - où deux districts convergent, où les routes se croisent et ainsi de suite, la couverture en maximisant, l'accessibilité et la mobilité, donc pour permettre Transit Oriented Development.
It may appear that we do not need cars in this situation, however there remains great scope for industries to manufacture a great many alternative modes of transport and still for global export, designing and building vehicles for Smart Transport systems.
Il peut sembler que nous ne devons pas les voitures dans cette situation, mais il reste de grandes possibilités pour les industries de la fabrication d'un grand nombre de modes de transport alternatifs et encore pour l'exportation mondiale, la conception et les véhicules de construction pour les systèmes de transport intelligent.
Transit Orientated Development
At no point in the hypothetical city, in the built environment, is a pedestrian more than 500m from the nearest transport node.À aucun moment dans la ville hypothétique, dans l'environnement construit, est un piéton plus de 500 m à partir du nœud de transport le plus proche.
City Service (Commercial) Transport Network
As discussed on the Smart Cities Sustainable Cities Collective Webinar (@sustaincities) presented by @DavidKThorpe on 9th April 2015, it is virtually inconceivable to design a city where its residents and visitors rely exclusively on public transportation, for commercial operations to rely on this too.
il est pratiquement inconcevable de concevoir une ville où ses résidents et visiteurs comptent exclusivement sur le transport public, pour des opérations commerciales à compter sur cela aussi.
il est pratiquement inconcevable de concevoir une ville où ses résidents et visiteurs comptent exclusivement sur le transport public, pour des opérations commerciales à compter sur cela aussi.
As Pratik Dave (@homeisland), Independent Consultant in Sustainable Urban Transport Programs commented; commercial activities such as deliveries are often carried out during the night and early hours when traffic is greatly reduced.
activités commerciales telles que les livraisons sont souvent effectuées pendant la nuit et tôt lorsque le trafic est fortement réduit.
activités commerciales telles que les livraisons sont souvent effectuées pendant la nuit et tôt lorsque le trafic est fortement réduit.
For these reasons and for others related to waste collection and recycling, this idealized city has a separate commercial rail line, connected to satellite or periphic metabolic distribution depots. Permitting 24 hour delivery/dispatch without the hindrance of congestion and accessibility.
Pour ces raisons et pour d'autres liés à la collecte des déchets et le recyclage, cette ville idéalisée a une ligne ferroviaire commerciale distincte, reliée au satellite ou dépôts de distribution métaboliques periphic. Permettant 24 heures de livraison / expédition sans l'entrave de la congestion et d'accessibilité.
This commercial line collects and distributes throughout the city, acting like the blood system in many ways, in our bodies - supplying nutrients and taking away waste products for processing.
Cette ligne commerciale recueille et distribue dans toute la ville, agissant comme le système sanguin à bien des égards, dans notre corps - apport de nutriments et enlever les déchets produits pour le traitement.
Cette ligne commerciale recueille et distribue dans toute la ville, agissant comme le système sanguin à bien des égards, dans notre corps - apport de nutriments et enlever les déchets produits pour le traitement.
There are points in the city such as markets where goods and materials are delivered, exchanged and sold. These stations, it is conceived, also have storage facilities for distribution and so on. This commercial line is directly connected to the National inter-city lines (blue) to facilitate import and export of goods and materials.
Il ya des points de la ville tels que les marchés où les biens et les matériaux sont livrés, échangés et vendus. Ces stations, il est conçu, ont également des installations de stockage pour la distribution et ainsi de suite. Cette ligne commerciale est directement relié aux lignes nationales inter-ville (bleu) pour faciliter l'importation et l'exportation de biens et de matériaux.
Il ya des points de la ville tels que les marchés où les biens et les matériaux sont livrés, échangés et vendus. Ces stations, il est conçu, ont également des installations de stockage pour la distribution et ainsi de suite. Cette ligne commerciale est directement relié aux lignes nationales inter-ville (bleu) pour faciliter l'importation et l'exportation de biens et de matériaux.
Théorie des lieux centraux de Christaller décrit comment «les établissements fonctionnent comme des« lieux centraux »offrant des services aux régions avoisinantes." (Wiki)
La théorie de la place centrale peut aider dans le développement de TOD et les associations entre les nœuds de transport, des routes et des fonctions urbaines. Si l'on considère «colonies» que les centres au sein d'une ville existante - comme un centre commercial, centre d'affaires ou une zone industrielle, nous pouvons commencer à voir comment il ya des «lieux centraux» au sein de chaque établissement à pratiquement chaque échelle.
Place Central théorie a été avancée par le groupe de recherche de l'Université française Comte ThéMA, avec Chef d'Projet Professeur Pierre Frankhauser, en travaillant sur un projet financé par le gouvernement français et l'Union européenne intitulé PREDIT (Programme de recherche le et d'innovation Dans les transports terrestres) traduit par "Le Programme de Recherche et Innovation sur les transports terrestres. "
ThéMA, Prof. Frankhauser articles des journals qui décrit les développements concernant fractale, de transit orienté, la théorie de la place centrale, est intitulé «Une approche multi-échelle (Multi-Fractal) pour une stratégie de planification systémique à partir d'une région à une échelle architecturale." Ce document et d'autres sont disponibles via la base de données de recherche en libre accès 'archives HAL manifeste de la France.
Ainsi nous pouvons voir qu'il ya un besoin pour un service de TOD "Central Places," à la pollution de l'adresse, la congestion, l'efficacité économique, etc.
Le système de transport doit être cohérente, et, idéalement, un service toutes les régions du contexte urbain. Il doit se connecter aux réseaux de transport plus larges, régionaux et nationaux.
Elle doit être exempte de carbone, ou net-zéro carbone, il doit être facile à naviguer et utilisable par tous les niveaux d'âge et de mobilité.
Le système doit être extensible sans porter préjudice à l'ensemble - comme nous l'avons vu que les extensions ponctuelles aux infrastructures de transport, sans planification et de l'expertise adéquate a massifs effets d'entraînement - il peut exacerber les défis de la pollution, de la mobilité et de la congestion et de couper les zones de la ville si pas correctement planifié.
La théorie de la place centrale peut aider dans le développement de TOD et les associations entre les nœuds de transport, des routes et des fonctions urbaines. Si l'on considère «colonies» que les centres au sein d'une ville existante - comme un centre commercial, centre d'affaires ou une zone industrielle, nous pouvons commencer à voir comment il ya des «lieux centraux» au sein de chaque établissement à pratiquement chaque échelle.
Place Central théorie a été avancée par le groupe de recherche de l'Université française Comte ThéMA, avec Chef d'Projet Professeur Pierre Frankhauser, en travaillant sur un projet financé par le gouvernement français et l'Union européenne intitulé PREDIT (Programme de recherche le et d'innovation Dans les transports terrestres) traduit par "Le Programme de Recherche et Innovation sur les transports terrestres. "
ThéMA, Prof. Frankhauser articles des journals qui décrit les développements concernant fractale, de transit orienté, la théorie de la place centrale, est intitulé «Une approche multi-échelle (Multi-Fractal) pour une stratégie de planification systémique à partir d'une région à une échelle architecturale." Ce document et d'autres sont disponibles via la base de données de recherche en libre accès 'archives HAL manifeste de la France.
Ainsi nous pouvons voir qu'il ya un besoin pour un service de TOD "Central Places," à la pollution de l'adresse, la congestion, l'efficacité économique, etc.
Le système de transport doit être cohérente, et, idéalement, un service toutes les régions du contexte urbain. Il doit se connecter aux réseaux de transport plus larges, régionaux et nationaux.
Elle doit être exempte de carbone, ou net-zéro carbone, il doit être facile à naviguer et utilisable par tous les niveaux d'âge et de mobilité.
Le système doit être extensible sans porter préjudice à l'ensemble - comme nous l'avons vu que les extensions ponctuelles aux infrastructures de transport, sans planification et de l'expertise adéquate a massifs effets d'entraînement - il peut exacerber les défis de la pollution, de la mobilité et de la congestion et de couper les zones de la ville si pas correctement planifié.
Part Two - Hierarchy and Usage
To travel from point A to point B, the ideal is one mode of transport at sustained speed from A - B with no stops or change overs.
When we travel short distances we use different means of transport to when we travel over great distances.
The purpose, distance and destination of our journey determines the optimal mode of transport or combination thereof.
Getting to the moon, necessitates a space vehicle, getting deep into the jungle may necessitate a helicopter, 4x4, animals and of course, traveling by foot.
Getting from our home to work, requires less specialist transport methods than getting to the moon.
All very obvious, but considering these statements and looking at hierarchies of transportation methods can help determine the best combination of means for navigating and traveling within a city or geographical area.
If considering transportation for a city, we may seek the most efficient, fastest method or combination of methods, that is safe, reliable, sustainable and affordable.
When traveling to the moon, the levels of costs, durability and safety greatly differ from domestic journeys.
Without spending too much time on a diagram...
We can see there is a hierarchy of transport methods
These can be arranged by:
- Luxury/Cost
- Convenience/Accessibility
- Number of vehicles/users
- Carbon emissions
and so on...
Detailed info-graphics are available, searching on the net.
So we can say there is a hierarchy of transportation methods, ranging from pedestrian to space travel.
On the whole we use methods lower down in the hierarchy, with greater emphasis on land-based travel. The most people travel by foot, the least travel by space.
We can look at journey types. In getting from destination A to B we may use a variety of methods. We can say that most journeys begin by foot, and end by foot, with a combination of pedal and motor vehicle in between.
A typical journey to work in an urban area may be:
Foot
Foot - Bike - Foot
Foot - Car - Foot
Foot - Tube/Metro - Foot
Foot - Bus - Foot
Foot - Tube/Metro - Bus - Foot
and so on...
In a rural area this may differ slightly
Foot
Foot - Bike - Foot
Foot - Car/Bus - Foot and so on...
For international business, a greater range of methods may be employed getting from A to B:
Foot - Taxi - Foot - Aeroplane - Foot - Taxi - Foot
Or for a foreign holiday, again a great range of methods employed:
Foot - Taxi - Coach - Aeroplane - Coach - Taxi - Foot and so on...
A range of methods of transportation are employed for different purposes and journey types, domestic, commercial and business.
For a city, one mode of transport at sustained speed from A - B with no stops or change overs is the ideal.
It has been determined that Transit Orientated Developments (TODs) aim to permit this, with the city serviced by transport nodes within walking range.
"TODs generally are located within a radius of one-quarter to one-half mile (400 to 800 m) from a transit stop, as this is considered to be an appropriate scale for pedestrians, thus solving the last mile problem."
(Wikipedia)
For a transport system to utilize only one method of transportation is limiting. Therefore the ideal of
"one mode of transport at sustained speed from A - B with no stops or change overs" is presently, overly simplistic and idealistic; save teleportation - however, work continues on Bell's inequality theorem!
In traveling around or across a city, we use varying degrees of transport methods. We walk to a travel node (station) and then board the vehicle which will take us to, either within walking distance of our destination, or to another station where we will change (routes or type of vehicle) in order to get us closer to our destination. There may be one or multiple changes in the course of our journey.
Christaller's Central Place Theory describes how "settlements function as 'central places' providing services to surrounding areas." (Wiki)
Central Place theory can assist in the development of TODs and the associations between transport nodes, routes and urban function. If we consider 'settlements' as centers within an existing city - such as a retail centre, business hub or an industrial zone, we can begin to see how there are "central places" within every settlement at virtually every scale.
Central Place theory has been advanced by the French Comte University research group ThéMA, working on a project funded by the French Government and EU entitled PREDIT (le Programme de recherche et d’innovation dans les transports terrestres) translated as "The Research and Innovation Programme on Terrestrial Transport."
So we can say there is a hierarchy of transportation methods, ranging from pedestrian to space travel.
On the whole we use methods lower down in the hierarchy, with greater emphasis on land-based travel. The most people travel by foot, the least travel by space.
We can look at journey types. In getting from destination A to B we may use a variety of methods. We can say that most journeys begin by foot, and end by foot, with a combination of pedal and motor vehicle in between.
A typical journey to work in an urban area may be:
Foot
Foot - Bike - Foot
Foot - Car - Foot
Foot - Tube/Metro - Foot
Foot - Bus - Foot
Foot - Tube/Metro - Bus - Foot
and so on...
In a rural area this may differ slightly
Foot
Foot - Bike - Foot
Foot - Car/Bus - Foot and so on...
For international business, a greater range of methods may be employed getting from A to B:
Foot - Taxi - Foot - Aeroplane - Foot - Taxi - Foot
Or for a foreign holiday, again a great range of methods employed:
Foot - Taxi - Coach - Aeroplane - Coach - Taxi - Foot and so on...
A range of methods of transportation are employed for different purposes and journey types, domestic, commercial and business.
For a city, one mode of transport at sustained speed from A - B with no stops or change overs is the ideal.
It has been determined that Transit Orientated Developments (TODs) aim to permit this, with the city serviced by transport nodes within walking range.
"TODs generally are located within a radius of one-quarter to one-half mile (400 to 800 m) from a transit stop, as this is considered to be an appropriate scale for pedestrians, thus solving the last mile problem."
(Wikipedia)
For a transport system to utilize only one method of transportation is limiting. Therefore the ideal of
"one mode of transport at sustained speed from A - B with no stops or change overs" is presently, overly simplistic and idealistic; save teleportation - however, work continues on Bell's inequality theorem!
In traveling around or across a city, we use varying degrees of transport methods. We walk to a travel node (station) and then board the vehicle which will take us to, either within walking distance of our destination, or to another station where we will change (routes or type of vehicle) in order to get us closer to our destination. There may be one or multiple changes in the course of our journey.
Christaller's Central Place Theory describes how "settlements function as 'central places' providing services to surrounding areas." (Wiki)
Central Place theory can assist in the development of TODs and the associations between transport nodes, routes and urban function. If we consider 'settlements' as centers within an existing city - such as a retail centre, business hub or an industrial zone, we can begin to see how there are "central places" within every settlement at virtually every scale.
Central Place theory has been advanced by the French Comte University research group ThéMA, working on a project funded by the French Government and EU entitled PREDIT (le Programme de recherche et d’innovation dans les transports terrestres) translated as "The Research and Innovation Programme on Terrestrial Transport."
A journal paper which describes developments regarding fractal, transit orientated, central place theory, is entitled "A multi-Scale (Multi-Fractal) approach for a systemic planning strategy from a regional to an architectural scale." This paper and others are available via the open access research database 'HAL archives overt' France.
So we can see that there is a need for a TOD servicing "Central Places," to address pollution, congestion, economic efficiency etc.
The transport system needs to be coherent, and ideally, service all areas of the urban context. It must connect to wider, regional and national transport networks.
It must be carbon free, or net-zero carbon, it must be easy to navigate and usable by all age and mobility levels.
The system must be expandable without detriment to the whole - as we have seen that piecemeal extensions to transport infrastructure, without adequate planning and expertise has massive knock-on effects - it can exacerbate the challenges of pollution, mobility and congestion and cut off areas of the city if not properly planned.
6 point compass for use with geodesic polyhedral grid mapping #mapping #geodesic #polyhedral #gridmapping #spatial #spatialindex #wayfinding
Thursday, April 2, 2015
Ecosystem Design for Community Settlement Planning
Ecosystem Design using Pattern Language
-Using forest ecology as analogy to define ecosystem planning for settlement design / urban planning
It is possible to look at (observe and study) complete functioning climax ecosystems, to identify forms and functions within this climax community:
Forms: (plants, animals, structures - trees, rocks, fungi, microbes etc)
Functions: (nitrogen fixers, decomposers, self-seeders, perennials, pollinators, burrowers, scavengers, predators, herbivores etc).
Functions: (nitrogen fixers, decomposers, self-seeders, perennials, pollinators, burrowers, scavengers, predators, herbivores etc).
Image : The form and functions of a chicken. source: http://www.fallbrookpermaculture.com/chickens/
Using a forest ecology as an example, this is achieved through a combination of processes referred to as biological succession, leading to a state of dynamic equilibrium and therefore, self perpetuation.
successive
layers of processes and functions that facilitate the emergence of
increasingly complex support systems for increasingly complex organisms
to exists - from single cell, microbial, fungal, multi-cellular,
vegetative and insectory to fish, reptilian and mammalian.
The yield of an ecological system is theoretically unlimited, only limited by limiting factors, resources can be intentionally supplied by human intervention in an ecological system, simple forms of cultivation / silviculture , or positive human interventions are:
habitat creation and restoration ecology e.g via:
the addition/creation of soil and humus - composting, in order that plants can grow
introducing seeds, plants, trees to speed up natural processes of migration in order to create biodiversity
introduction of beneficial insects - pollinators and predators to improve pollination and biological pest control
introduction of fish repltiles and animals as active agents in ecosystem processes and as support species for other organisms, including humans.
the addition/creation of soil and humus - composting, in order that plants can grow
introducing seeds, plants, trees to speed up natural processes of migration in order to create biodiversity
introduction of beneficial insects - pollinators and predators to improve pollination and biological pest control
introduction of fish repltiles and animals as active agents in ecosystem processes and as support species for other organisms, including humans.
Soil, plants, insects, trees, animals and geological features all perform ecosystic services, all form part of the support systems foir increasing complex forms and functions of a living ecological system.
A very simplified example would be introducing soil supports plants, including planbts supports herbivores, introducing herbivores supports decomposition decomposition feeds the soil, which feeds planst which feeds herbivores...
Thus we know by observation and understanding what/which components are present and what functions and processes exist within the ecosystem. there is no waste in nature, in natural processes from molecular to landscape or regional events, there is no waste, only change this is a law of thermodynamics.
There are universal transferable concepts, for both form and functions.
Universal Forest Structure
Image Source: http://chears.org/foodforest/about/food-forests/
Forest Gardening see a summary and Knowledgebase see also here
In the diagram above, we can see a typical 7-layered forest system, comprised of (plant examples given for temperate climates)
- Climax Layer - Upper Canopy (Sweet Chestnut, Cherry, Pear, Victoria Plum)
- Small Tree Layer - Lower Canopy or Sub-Canopy (Hazel, Crab Apple, Fig, Medlar, - dwarfing trees)
- Climbers and Vines (Kiwi, Grape, Passion Fruit, Runner Beans)
- Shrubs, and understorey bushes (Blackcurrant, Gooseberry, Raspberry, Eleagnus)
- Herbaceous perenennials and annuals (Mint, Chives, Fennel, Rhubarb)
- Ground Cover (Strawberries, Clover, Ramsons)
- Root Layer - Roots and Rhizosphere ( Parsnips, Welsh Onion, Ground Nut, Garlic and Chives, Jerusalem Artichoke)
Universal Forest Functions
Image Source: Permaculture Designers' Manual - Bill Mollison 1988 via http://www.wegrowfromhere.com/
Biomimietic Design
apologies... this essay is unfinished, I hope to tidy it up and make good soon... there is a lot of great new references to add... and better examples and analogies..
Biological Conversion, Filtration, (re)Production, Creation and Re-creation
In a Smart Garden City, the "Smart," or intelligent bit, is choosing well, how to employ inherent and latent properties of biological and technological systems. For this reason, a Smart Garden City is one that combines the best of ecological and technological engineering - designing for optimization based upon lessons learnt through observation of processes, inputs and outcomes.
As a the leaves on a plant sequester Carbon through photosynthesis; converting light energy and Carbon Dioxide, combined with soil nutrients, creating Carbon-based biomass, with oxygen as a bi-product. So too, does any vegetation, and en masse we call this green space, in nature the highest conversion system is a forest system. Producing thousands of tonnes of biomass and oxygen per day, sequestering thousands of tonnes of atmospheric carbon in the process, every second.
Therefore, it is common sense to plan and design for the inclusion of productive urban green space, including urban and peri-urban woodland, coppices and agroforestry systems, resulting in a complete city organism includes both tissues and organs and the production of these - a Smart Garden City is a complete organism.
"...it is common sense to plan and design for the inclusion of productive urban green space, including urban and peri-urban woodland, coppices and agroforestry systems, a complete city organism includes organs and tissues, as well as bones and veins..."
We can see that plants possess a reception mechanism - to uptake or receive inputs - of sunlight and carbon dioxide via the leaves at the top of the plant.
This is linked by a vascular system within the entire organism, comprised of Xylem and Phloem.
whilst the bottom of the plant exhibits a filtration and absorption system known as the roots, to absorb water and nutrient and mineral compounds.
The simplified diagram to the right shows that vegetation has a vascular, circulatory system.
Xylem transports water and minerals up to the stems and leaves.
Phloem transports processed nutrients, sugars and amino acids to the roots.
This ensures that material needs such as water and nutrient compounds reach all parts of the organism, ensuring vital products are distributed allowing for growth, repair and (re)production, via fruits and seeds.
We can take this assertion a step further by looking at more complex systems within vegetation. One example is the reproductive system of the plant. We know this as blossom, flowers, fruit and seeds.
As we can replicate the biomass and oxygen production processes of a plant, en masse by planting en masse, we can also copy the reproductive system of the plant. The diagram left illustrates an idealized flower physiology.
As leaves are arranged around a central foci - the stem, so too are petals arranged around a central foci, being the Pistil (Stigma system) and Stamen. To translate this into the city, we can say there are foci - which, anthropocentrically speaking, are human population centres. As the plant invests in maintaining health, repair, growth and (re)production so too does the city. We need to supply these parts of the city organism, with the essential inputs required to to perform the functions of repair, growth and evolution.
To cut to the chase, we can ensure the ample supply of high quality tangible and intangible resources, creating a mutually beneficial environment, in order for evolution to continue and like an ancient tree, this can be in harmony with the greater organism of the forest and the planet.
Organs translate as centers or sites of complex activity - this can be a system of resource exchanges, such as a market place, or a combination or integration of resources, which may translate as a research and development centre, a workshop, a recycling centre, an architectural studio and so on. There are distribution centers, storage centers, call centers, factories, offices. The task is to reinterpret these as functions within a biological organism and define what biological functions they are serving to the greater organism. If it is deleterious to the health of the system, such as an open cast mine or a Fracking plant, it is difficult to see how this translates into essential biological functions. There is no such equivalent of a bank, except the feeling of well being or joy, but joy does not depend upon financial assets, in fact financial assets can bring a great deal of worry and negativity to a person's life. So it is necessary to find new interpretation of personal joy at the societal level. This may be in the form and depth of culture and community spirit - it can be the pleasantness of the people, it can be the beauty of both the architecture and landscaping.
Physical evolution is realised by biological reproductive processes, this involves the exchange and combination of indefinable and infinite criteria, both genetic, material and circumstantial, always resulting in unimaginable outcomes, there is no coherent understanding of the complexity of outcomes, and the inherent values of the infinite spectrum of variations that arise. Historically humans have created interpretations that are binary and limited by contemporary cultural and intellectual values.
Evolution is the creation of successive generations the survival of which is accordant with the necessary adaptions exhibited by the successive generations ensuring there ability to survive and continue the evolution. Evolution is not limited, nor stationary, it is constant. Adaptations
Plants generally dispose of waste products through defoliation - where the organism sheds part of it's physical structure. If a plant becomes intoxicated it may shed part of it's physiology, that can be a leaf, branch or entire upper section of the plant leaving just the roots in order to regenerate; many plants can regenerate from their root systems. Failing that, the entire organism will die. Without going into unnecessary detail, let us consider city waste disposal, mechanisms and of course biological analogy to learn from.
At the city scale, defoliation does of course occur - directly as a function of the vegetation present within the city. Defoliation is always an appropriate method of waste disposal, because by definition, it is expressed as the direct deposition of a waste material in situ. So perhaps when someone drops a sweet packet, it is metaphorically a form of defoliation, or deposition. Deposition requires further inputs of energy and ecosystem services to complete the cycling of the disposed material which in a circular system we may consider as a resource.
Deposition works for organic material, but not so well for inorganic material. But even with organic material, if the deposition occurs in a location not suited to nutrient or material decomposition, this can cause a stagnant accumulation of materials, which roughly speaking, leads to what we call 'pollution.' Purists will of course say that no organic material is pollution, but when fallen branches block a cycle path, there may be speculation as to the appropriateness of the accumulation of woody materials. Or when cholesterol blocks an artery we can say that this is due to a stagnant accumulation of materials, with an undesirable effect. So in summary, part of the city's metabolic system is comprised of deposition and decomposition such as we see in a forest. There are benefits to be derived from these processes, such as mulching, composting, heat production and fungal growth for example.
These kinds of systems may be related to tissue systems. In more complex organisms, we see their physiology also includes tissue systems, in addition to organ systems.
Biological systems are universal in mammalian species, although organisms that live in extreme environments often display unique evolutionary adaptations, such as the camel - adapted to desert environments has advanced water retention abilities, or animals adapted to extreme cold weather may possess a blubber layer, insulating downy fur, hollow hair fibres or oily coats to repel water. We can extrapolate these properties, and consider how buildings and cities in various climates adapt to these specificities - blubber and hollow fibres obviously translate as advanced insulation and isolation techniques for cold climes, thick waxy cuticle may assist in reflecting the searing heat of the sun, a camel storing water obviously translates to a city in an arid region finding ways to trap, absorb and store water, to raise and maintain the water table and so forth.
Because the city organism is more complex than a plant, we can look at more complex systems for inspiration. Therefore we shall also consider the mammalian physiology. A great many clues are held within this advanced biological metabolic system - clues which we can translate into the macro-form of the urban environment.
We know that our bowels support similar organisms to those involved with biochemical decomposition found in composting processes - that is why our bowels contain a great many microorganisms (or biochemists) involved in the breakdown of materials - just the same as in a compost heap or forest floor - processes common to all forms soil formation. Before we discuss digestion (processing and conversion), let us continue to look at circulation - distribution and collection.
The diagram below illustrates the mammalian circulatory system. This shows how vital compounds (such as minerals, gases, hormones, enzymes) are transported and distributed around the body via a circular system of channels, in this instance using a liquid as the medium. At the same time as distribution, the channels also serve to remove and evacuate spent and output compounds from the various parts of the organism some of these are waste, some are toxins, some are to be recycled and reused elsewhere.
Returning compounds are transported in the veins for filtration and conversion. Gases are exhaled, fibres may be recycled, toxins and surplus materials are shipped for removal from the system. Most often these waste products are transported to the digestive system, although there are other methods of extraction, such as we see when an infection rises to the surface of the skin for example. This is more of a reactionary or emergency process, a bit like if there was a plane crash, or a gas explosion, emergency services would be dispatched. If a tree were to fall onto a house, we would see a combination of responses - initially emergency units, followed by tree surgeons and laborers to remove the debris. The same may be true of a puncture wound to the body - where toxic or dangerous material is enveloped and ejected from the body as close to the site as possible. Remaining residues or non lethal compounds are broken down and enter the cycle or are sent to the digestion system.
The combination of the circulatory system and the digestive system, maintain nutrient supply and waste processing and evacuation throughout the system of the body - this is the metabolic system. This is similar to how the city creates products, distributes them around the city, collects waste, recycles and in a last resort we create feaces - waste to be evacuated from the system. The human body does not create any non-biodegradeable products, no mammal or biological system creates non-biodegradable products.
In the case of the mammalian body this final waste product is organic and by leaving the body system, it re-eneters the planet's nutrient cycles - such as the carbon and the nitrogen cycles.
Biological Conversion, Filtration, (re)Production, Creation and Re-creation
The following, is an introduction to the reasons behind the conceptual form of the Smart Garden City (also known as the GCoT Model); A complex mosaic of formalised natural forms, natural patterns and natural interactions and interconnections, which harmonize bottom-up with top-down inputs and eventualities.
In a mechanical or technological sense, plants are like filtration, conversion, production units. They absorb and collect inputs and convert this into products, tangible and seemingly intangible. They filter airborne particulates, trapping the particulates in their leaves and fibrous structures, at the same time as absorbing and converting Carbon dioxide and Water to Oxygen and Sugar. They absorb and convert sunlight and minerals, together with Carbon dioxide and water into biomass which we can use - food, fuel and construction materials. They provide shade and habitat, influence wind flow patterns and create sound and motion.
Vegetation is an ecosytemic service provider of nutrients, biomass and building materials as well as clean air, habitat and enjoyment. There are no equivalent machines to do this synergistically, thus it is wise to invite these wondrous creations (plants and animals alike) into our support system at every opportunity.
Similarly the mammalian body - for instance our human body - our very own sustainable transport, habitation, communication, computing, design, entertainment and recreation device, possesses many synergistic processes and qualities both inherently, and also through learning skills and applying it's intellectual and physiological capabilities. We are the fortunate operators of our bodies, how we choose to use them, is akin to how people choose to use other tools and devices, such as cars and machinery - they can be used responsibly and creatively, or in a way that is dangerous and even lethal to ourselves and others.
"We are the fortunate operators of our bodies, how we choose to use them, is akin to how people choose to use other tools and devices, such as cars and machinery - they can be used responsibly and creatively, or in a way that is dangerous and even lethal to ourselves and others."
We can look at how the universal systems in biological organisms (such as the brain, liver, heart and vascular systems) function on a conceptual level, we can interpret these functions and patterns and translate and magnify them through realizing synergistic relationships inherent in natural ecosystem processes and facilitating creative interrelationships, we can catalyze these processes, facilitate them and speed them up by creating optimal conditions, such as supplying nutrients, water and light as we tend to household plant, but scale this up.
This does not necessitate our involvement on a sub-molecular or genetic level. Plant and domestic animal breeding is a responsible approach. The number of organisms and their requisite functions or roles within the greater organism of the planet are unknown and unknowable. We only recently discovered that Wolves influence the flow of fluvial systems - from the outside, if this had not been proven or observed, it may appear a very tenuous connection to propose, but the effects of trophic cascade must be considered, both top-down cascade and bottom-up ascension (e.g. effects of soil reparations) both possess equally as widespread impacts; human influence or intervention in the trophic spectrum has infinite outcomes and it can be extremely positive as well as extremely negative.
"We can look at biological circulatory, filtration and conversion systems and learn from them, (re)interpret them and design for the repair and optimization of degraded ecosystems - to act as a greater body supporting us at a societal level..."
We can look at biological circulatory, filtration and conversion systems and learn from them, (re)interpret them and design for the repair and optimization of degraded ecosystems to act as a greater body supporting us at a societal level (degraded ecosystems - where we have removed or destroyed ecosystem processes in the landscape) resulting in ecological repair - bioremediation and regenerative landscape and agricultural practices - by employing biological processes and arranging landscapes via plant, animal, built and temporal assemblies, we can combine this with transport routes (acting as circulatory systems) we may employ machinery or other alternatives, to combine their natural properties and patterns for exponential ecological materials production and filtration. We can employ plants as "factories" or "Production Plants" that satisfy material needs such as fuel and food, as well as physiological and psychological needs, for both ourselves and for fauna - other animals, or biological organisms - which are all interconnected, essential, fellow parts of the system - everything gardens.
"In a Smart Garden City, the "Smart," or intelligent bit, is choosing well, how to employ inherent and latent properties of biological and technological systems. For this reason, a Smart Garden City is one that combines the best of ecological and technological engineering - designing for optimization based upon lessons learnt through observation of processes, inputs and outcomes."
In a Smart Garden City, the "Smart," or intelligent bit, is choosing well, how to employ inherent and latent properties of biological and technological systems. For this reason, a Smart Garden City is one that combines the best of ecological and technological engineering - designing for optimization based upon lessons learnt through observation of processes, inputs and outcomes.
Biomimetic Nutrient and Waste Pathways in an idealized city - featuring tissue and organ systems - |
"In more complex organisms, we see their physiology includes tissue systems, in addition to organ systems..."
Biomimetics or biomimicry is the imitation of the models, systems, and elements of nature for the purpose of solving complex human problems.[1] The terms biomimetics and biomimicry come from Ancient Greek: βίος (bios), life, and μίμησις (mīmēsis), imitation, from μιμεῖσθαι (mīmeisthai), to imitate, from μῖμος (mimos), actor. A closely related field is bionics.[2]
Living organisms have evolved well-adapted structures and materials over geological time through natural selection. Biomimetics has given rise to new technologies inspired by biological solutions at macro and nanoscales. Humans have looked at nature for answers to problems throughout our existence. Nature has solved engineering problems such as self-healing abilities, environmental exposure tolerance and resistance, hydrophobicity, self-assembly, and harnessing solar energy. (SOURCE : Wikipedia)
http://www.seafriends.org.nz/enviro/soil/soil27.gif |
Therefore, it is common sense to plan and design for the inclusion of productive urban green space, including urban and peri-urban woodland, coppices and agroforestry systems, resulting in a complete city organism includes both tissues and organs and the production of these - a Smart Garden City is a complete organism.
"...it is common sense to plan and design for the inclusion of productive urban green space, including urban and peri-urban woodland, coppices and agroforestry systems, a complete city organism includes organs and tissues, as well as bones and veins..."
http://images.wisegeek.com/leaf-diagram.jpg |
This is linked by a vascular system within the entire organism, comprised of Xylem and Phloem.
whilst the bottom of the plant exhibits a filtration and absorption system known as the roots, to absorb water and nutrient and mineral compounds.
http://guide.makebonsai.com/images/Plants-and-Water-Relations.jpg |
Xylem transports water and minerals up to the stems and leaves.
Phloem transports processed nutrients, sugars and amino acids to the roots.
This ensures that material needs such as water and nutrient compounds reach all parts of the organism, ensuring vital products are distributed allowing for growth, repair and (re)production, via fruits and seeds.
http://5e.plantphys.net/image.php?id=570 |
As we can replicate the biomass and oxygen production processes of a plant, en masse by planting en masse, we can also copy the reproductive system of the plant. The diagram left illustrates an idealized flower physiology.
As leaves are arranged around a central foci - the stem, so too are petals arranged around a central foci, being the Pistil (Stigma system) and Stamen. To translate this into the city, we can say there are foci - which, anthropocentrically speaking, are human population centres. As the plant invests in maintaining health, repair, growth and (re)production so too does the city. We need to supply these parts of the city organism, with the essential inputs required to to perform the functions of repair, growth and evolution.
To cut to the chase, we can ensure the ample supply of high quality tangible and intangible resources, creating a mutually beneficial environment, in order for evolution to continue and like an ancient tree, this can be in harmony with the greater organism of the forest and the planet.
Organs translate as centers or sites of complex activity - this can be a system of resource exchanges, such as a market place, or a combination or integration of resources, which may translate as a research and development centre, a workshop, a recycling centre, an architectural studio and so on. There are distribution centers, storage centers, call centers, factories, offices. The task is to reinterpret these as functions within a biological organism and define what biological functions they are serving to the greater organism. If it is deleterious to the health of the system, such as an open cast mine or a Fracking plant, it is difficult to see how this translates into essential biological functions. There is no such equivalent of a bank, except the feeling of well being or joy, but joy does not depend upon financial assets, in fact financial assets can bring a great deal of worry and negativity to a person's life. So it is necessary to find new interpretation of personal joy at the societal level. This may be in the form and depth of culture and community spirit - it can be the pleasantness of the people, it can be the beauty of both the architecture and landscaping.
Physical evolution is realised by biological reproductive processes, this involves the exchange and combination of indefinable and infinite criteria, both genetic, material and circumstantial, always resulting in unimaginable outcomes, there is no coherent understanding of the complexity of outcomes, and the inherent values of the infinite spectrum of variations that arise. Historically humans have created interpretations that are binary and limited by contemporary cultural and intellectual values.
Evolution is the creation of successive generations the survival of which is accordant with the necessary adaptions exhibited by the successive generations ensuring there ability to survive and continue the evolution. Evolution is not limited, nor stationary, it is constant. Adaptations
Plants generally dispose of waste products through defoliation - where the organism sheds part of it's physical structure. If a plant becomes intoxicated it may shed part of it's physiology, that can be a leaf, branch or entire upper section of the plant leaving just the roots in order to regenerate; many plants can regenerate from their root systems. Failing that, the entire organism will die. Without going into unnecessary detail, let us consider city waste disposal, mechanisms and of course biological analogy to learn from.
At the city scale, defoliation does of course occur - directly as a function of the vegetation present within the city. Defoliation is always an appropriate method of waste disposal, because by definition, it is expressed as the direct deposition of a waste material in situ. So perhaps when someone drops a sweet packet, it is metaphorically a form of defoliation, or deposition. Deposition requires further inputs of energy and ecosystem services to complete the cycling of the disposed material which in a circular system we may consider as a resource.
Deposition works for organic material, but not so well for inorganic material. But even with organic material, if the deposition occurs in a location not suited to nutrient or material decomposition, this can cause a stagnant accumulation of materials, which roughly speaking, leads to what we call 'pollution.' Purists will of course say that no organic material is pollution, but when fallen branches block a cycle path, there may be speculation as to the appropriateness of the accumulation of woody materials. Or when cholesterol blocks an artery we can say that this is due to a stagnant accumulation of materials, with an undesirable effect. So in summary, part of the city's metabolic system is comprised of deposition and decomposition such as we see in a forest. There are benefits to be derived from these processes, such as mulching, composting, heat production and fungal growth for example.
Earthship Biotecture - A complete system www.lowtechmagazine.com/2007/12/heat-your-house.html www.earthship.com |
Biological systems are universal in mammalian species, although organisms that live in extreme environments often display unique evolutionary adaptations, such as the camel - adapted to desert environments has advanced water retention abilities, or animals adapted to extreme cold weather may possess a blubber layer, insulating downy fur, hollow hair fibres or oily coats to repel water. We can extrapolate these properties, and consider how buildings and cities in various climates adapt to these specificities - blubber and hollow fibres obviously translate as advanced insulation and isolation techniques for cold climes, thick waxy cuticle may assist in reflecting the searing heat of the sun, a camel storing water obviously translates to a city in an arid region finding ways to trap, absorb and store water, to raise and maintain the water table and so forth.
Because the city organism is more complex than a plant, we can look at more complex systems for inspiration. Therefore we shall also consider the mammalian physiology. A great many clues are held within this advanced biological metabolic system - clues which we can translate into the macro-form of the urban environment.
We know that our bowels support similar organisms to those involved with biochemical decomposition found in composting processes - that is why our bowels contain a great many microorganisms (or biochemists) involved in the breakdown of materials - just the same as in a compost heap or forest floor - processes common to all forms soil formation. Before we discuss digestion (processing and conversion), let us continue to look at circulation - distribution and collection.
The diagram below illustrates the mammalian circulatory system. This shows how vital compounds (such as minerals, gases, hormones, enzymes) are transported and distributed around the body via a circular system of channels, in this instance using a liquid as the medium. At the same time as distribution, the channels also serve to remove and evacuate spent and output compounds from the various parts of the organism some of these are waste, some are toxins, some are to be recycled and reused elsewhere.
http://farm3.static.flickr.com/2512/3693490067_fa9e25eba8.jpg |
The combination of the circulatory system and the digestive system, maintain nutrient supply and waste processing and evacuation throughout the system of the body - this is the metabolic system. This is similar to how the city creates products, distributes them around the city, collects waste, recycles and in a last resort we create feaces - waste to be evacuated from the system. The human body does not create any non-biodegradeable products, no mammal or biological system creates non-biodegradable products.
In the case of the mammalian body this final waste product is organic and by leaving the body system, it re-eneters the planet's nutrient cycles - such as the carbon and the nitrogen cycles.
Subscribe to:
Posts (Atom)